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1. Introduction

Let C be a circle with circumference equal to one. (For notational
convenience, we frequently identify C with an interval of fength one on the
real line.) For probability measures on C we will define orderings < such
that g,«p, meansroughly thatp, is “more uniform™ than p,or that g, is
“more clumped” than ;. Distributional orderings on the real line R have
proven to be very useful in many areas of probability and statistics and it is

hoped that orderings on C will also prove to be of some use. Later in this
paper we shall present applications of the orderings <« to the following
areas. randcm ooverage problems on the circle, the distribution of spacings,
and the analysis of directional data. In this section we shall motivate and
define the orderings and present some of their basic properties.

To define the orderings we need the following notation. Let U be a

random variable uniformly distributed onC. A random arc on C having
fength b and clockwise endpoint U will be denoted [U,U+b). For any

probability measure p on C and length be(0,1) we define the random
variable D(i,b)=-p({U,U+b)). Please note that throughout the paper we shall
use . (perhaps with a subscript or superscript) to denote a probability
measure on C.
Our orderings have the form p,<«p, if and only if D{g,b) is "less
variable” than D(y,b) for all be(0,1). To motivate this type of definition we
note first that

(1.1) ED(p.b) = b for all p and all be(0,1).

(See Section 5 for a proof of this; all proofs are given in Section 5.) Now
consider the two extreme cases: let A be the uniform distribution on C and §,
be the degenerate distribution which assigns all its mass to an arbitrary
point x ¢C. Clearly D(i,b) = b with probability one and

with probability 1-b, f"’ ton for g 7£—
D(8, -b"{ 1  with probability b. o oRekl
For distributions on [0,1] with mean b, these are the two extremes with : e

respect to variability. This suggests using the "variability" orp(“.b)w e e e
measure the “uniformity” of . e e
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Using two different notions of "variability” we obtain the orderings
& and « defined as follows:

ki i if Var(D(p,.b)) g Var(D(,.b)) for all be(0,1).

B by i E¥(D(p,.b)) ¢ B¥(D(g,.b)) for all convex functions ¥
and all be(0,1).

The letters v and ¢ have been chosen to remind us of the words "variance”
and "convex”. Using (1.1) and the fact that ¥(x)=x2 is convex we obtair.

(1.2) ki< By implies py <y

In order to vindicate the above definitions, we shall now list some
basic properties of the orderings. These properties are, for the most part,
ones that any reasonable “uniformity” ordering ought to possess. The
properties hold for both K« and «, so they are stated without the subscripts

v and c.

(1.3) A <cp <« 8, for all . Here ] is the uniform distribution and & is
a point mass at 1.

(1.4) Ry <<ppand p, <«cpy imply py <«<pgy.

Convolution of measures on C can be defined as follows. Identify C
with the interval [0,1). If X and Y are random variables with probability
measures k and § respectively, then the convolution p*% is the probability
measure of (X+Y) mod! . Intuitively speaking, the operation of convolution
smooths distributions and makes them more uniform, so that it is natural to
have

(LS5) pet «cp for all probability measures p and §{ on C.

In this paragraph, we shall identify C with the interval {-1/2, 1/2). A
probability density { defined on C is said to be symmetric and unimodal if
f(x)=f(-x; for all x and f is nonincreasing on the interval [0,1/2). Let p, and
k2 have densities {{ and [, respectively. If f, and f, are symmetric and
unimodal, and f, is “more peaked” about zero than f; , then it seems
reasonable to say that y; is more uniform than g, , and we can indeed show
the following:




Y

(1.6) If f, is symmetric and unimodal and

x x
I f,{u)du ¢ I f(u)du for 0 <x<1/2, then g, «cp,.
~-X -X

(It turns out that we do not need either symmetry or unimodality for f, , but
this is not very intuitive.) Here, we are using "more peaked” in the same

sense as Birnbaum (1948).
Finally, we note two convexity properties. The quantities PP, Py

are nonnegative and sum to one.

n
(1.7) Ifp, «cpforalli, then Tpp, «p.
i=1

n
(1.8) Ifp«(1-Blu+Py; for 0<P ¢l andalli then p <« Jp. .
i=]

2.0rdering Discrete Distributions

In this section we give explicit conditions which allow us to verify
whether or not the orderings <c< and & hold for some simple types of discrete
distributions. In particular, these conditions allow us to compare empirical

distributions so that, given two samples each containing n observations on C,
we can determine if one sample is more uniformly dispersed than the other.
For future convenience we define 8° to be the set of vectors ( X,.1;..1,)

satisflying %xi =landx, > 0foralli
i=]

Suppose a measure p has n atoms each having a mass of 1/n, that is, p
is the empirical distribution of a sample of n observations. Then y is
determined (up to a rotation) by the vector 1=(x,,X5,...5) of spacings
between consecutive atoms and we shall write p=SP(x). More precisely, for
any vector 1 ¢8®, we define the probability measure SP(x) on C (identified
with [0,1) ) by

n-1 i
Sp(x)-igs.,i where u,=0 and u, - k}:lx, for 1¢ign-1.
‘ =




Now consider a measure p having n atoms (of varying masses) 2qually

spaced around the circle C so that consecutive atoms are separated by the
distance 1/n . This measure j is determined (up to a rotation) by the vector
x= (X,X,...X,) of probability masses for the consecutive atoms and we shall

write p=PM(x). More precisety, for any vector x ¢ 8", we shall define the
probability measure PM(1) onC by

n-1
pM(X)' zli,lsl/n .
i<0

The names SP and PM are intended to remind us of “spacings” and
"probability masses” respectively. The measures SP(x) and PM(x) are
inverses or duals in a sense 10 be developed in Section 3 so that by the result
(3.1) we obtain

(2.1) SP(1) « SP(y) if and only if PM(x) « PM(y) .

We now present a condition on 1 and y which is necessary and
sufficient for SP{1) « SP(y). This condition is stated in terms of the

majorization ordering for vectors which is treated at length in the books by
Hardy, Littlewood and Polya (1952) and Marshall and Olkin (1979). For any
vector (x,.X,...X,). let x(;),X(y....X(,) denote the coordinates arranged in

increasing order I(;) < X() &< X(q)- If two vectors 1 and y in R® satisfy

n 1 a n
21 =2y, and Fx; < Yy for2ck¢nm,
el il ik ek

we say that 1 is majorized by y and write x§y.
For any vector x«(1,.%,,..,1,)¢8" and integer k withO sk ¢n we
define the vector x®) - (x&)x®&) &) py

k-1
x(fj - le" for all i.
j=0

Here the coordinates of x are considered to be arranged in a circle so that
X,.i=X;for alli. Note that x(-x, x(0.(00,.0)and x® - (1,1,..1). Our

condition can now be stated. For x and y in 8% ,




(2.2) SP(x) <« SP{y) if and only if x®) S ylt) for 1t <k <n-1.

The relationship (2.1) becomes false upon replacing 'c( by <v< , SO We
must state separate conditions for SP(x) « SP(y) and PM(x) « PM(y) .

These are now given. For x and y in 8°,

(2.3) PM(x) « PM(y) if and only if

n n
2(1(5’)2 < z(y(?)2 for 1¢k¢n-1, and

i=1 i=1
(2.4) SP(x) « SP(y) if and only if

(x(”‘x(”'""x(n-l)) : (y“)ly(z).m’y(n'l)) .

Here (x1),1(2)_ 1(e-1)) denotes the vector obtained by joining (stringing
together) the vectors 1!l x(2) _ x(0-1) into one long vector having n(n-1)
components.

It is straightforward to check the conditions (2.2), (2.3) or (2.4) for
any given 1 and y in 8%, so these conditions are useful in constructing

counterexamples like the following. Let x = (.3,.3..2,.2) and y - (.55.0..45.0).
We can easily verify that SP(x) « SP(y) is true, but that both SP(x) « SP(y)

and PM(x) <v<PM(y) are false. This shows that the orderings « and « are

in fact different and also that the relation (2.1) becomes false upon replacing

¢ by §. Similarly, withs - (4,.1,4,.1) and t = (.55,.15,.15,.15) , we find
that PM(s) &« PM(t) is true, but that SP(s) &« SP(t) is false.

We wish to note one more counterexample. Let

By = SP(35(1,2,3,.2,1,3) and p, - SP(15(1,2,3,1,3,2)).

It is easy to verify that both p, g and <y are true. The measures

ik, and y, are not equivalent in any obvious sense; neither measure can be

made to coincide with the other by using rotations or reflections of the circle.
Thus « is not a legitimate partial ordering; it satisfies the transitive

property (1.4), but not the anti-symmetry property.




For any measure y we define an inverse (or dual) measure y* as
follows. Identify C with [0,1) and let the random varigble U be uniform on
[0,1). The random variable X=1(I0,U]) can be regarded as a random point on
C so long as 0 and 1 are taken to represent the same point on C. Define p*
to be the probability measure of X. If y has no atoms and has support on all
of C, then the function F(x) = p(10.x]) is invertible and F-!(x) = p*((0.x}) for
0<x<] . The measure p* depends on the arbitrary choice of the origin (zero

point) on C, but in a trivial way. Different choices of the origin lead to
measures g* which differ only by a rotation.

If the measures j; and j1, are identical or can be made so by rotating
one of the measures, we shall write p, = p,. For the discrete measures in
Section 2 it is easily seen that p=SP(y) implies u* « PM(y) and similarly, §
= PM(y) implies p* = SP(y). In general, p** = i for all .

It will be convenient to use the following notation. Let X and Y be
bounded random variables with distributions F and G respectively. If E¥(X)

< E¥(Y) for all convex functions ¥, we say that X § Y or equivaiently F§G.
This type of ordering is well known and has many uses in queueing theory
(see Stoyan(1983)). The ordering § is closely related to the majorization

ordering & for vectors, hence the similarity in the notation.

The main result of this section is that inversion preserves the ordering
<« that is,

(3.1) By By if and only if ;q<c<p,;.

If we restrict ourselves to measures p which have no atoms and have
support on all of C, we can restate (3.1) in a more concrete fashion. Under
this restriction, for any y ¢C and t € (0,1) we can define L(y,p,t) to be the

length of the unique arc A on C which has clockwise endpoint y and satisfies
k(A)=t. Let Y; be distributed according to p, for i=1,2. Then

(3.2) By <y if and only if LY, ;) § L(Y,.p,.t) for all t€(0,1).

The relation (3.1) becomes false upon replacing « by «. See the
discrete counterexamples at the end of section 2. However, something




resembling (3.2) can be shown to hold for the ordering «. For any points

14y on C, define d(1.y) to be the length of the arc [x.y] having clockwise
endpoint x and counterclockwise endpoint y. When x-y, we randomize and
set d(x,y)~0 or 1 with each value having probability 1/2. Note that
d(xy)+d(yx)=1 unless x~y. Let X;.Y, be independent wiih distribution y,
and X,,Y, be independent with distribution p, . We can show that

(3.3) Iy <0y if andonly if d(X,Y,) § d(X,Y,).

Specializing this to discrete measures of the form SP(x) leads to the result
given in (2.4).

This section contains some applications of the uniformity orderings «

and &« In the first two applications the orderings are used to give precise

versions of some fairly intuitive qualitative statements.
Suppose n arcs having arbitrary lengths b,.b,....b, are placed

uniformly and independently onC. Let A denote the covered region,

a
A - U[Ui'ui’bi)
i1

where Uy.U,,..U, are independent and uniformly distributed on C.
Intuition suggests that if p, is “more uniform" than g, , then the covered

mass p(A) will be “less variable” than i,(\) . We can indeed show that
(4.1) If uy < pa. then Var(p (A)) ¢ Var(p,(A)) .

Note that when n-1 this statement follows immediately from the definition
of & Another result along the lines of (4.1) is

(4.2) If g, =pyopy for some measure y,, then p,(R)§ k(A).

Remember that * denotes convolution. The condition p, = k,*ps is much
stronger than |, <, (see result (1.5)).




The second application concerns the distribution of spacings and
higher order spacings. Let X;.X,...X; be iid.from the distribution y, .
Suppose X({).X(2).--X(q) 2re the points X; arranged in counterclockwise

order beginning with X(;)=X;. These points divide C into n segments
whose lengths (called spacings) are denoted $,.S,,...S, . To be precise we
take §; - d(x“).x“.n) with d as in (3.3) and X(a.1)"X(1) - Similarly, let
T;.T5...T, be the spacings between n iid. points from the distribution y, .

The "higher order spacings” are simply sums of consecutive spacings.
The properties of spacings and higher order spacings have been extensively
studied. For information and further references on this area see Pyke
(1965), Holst (1979) and Guttorp and Lockhart (1988).

When p, is "more uniform” than y, . it seems intuitive that the

spacings (and higher order spacings) under p, will be “less variable” than
those under y,. We can prove that

k k
(4.3) If py<cpp.then 3S; § 3T for I ck¢n-i.

i=1 i=1

Our final area of application is the analysis of directional data. A basic
problem in this area is that of testing for uniformity: Does a given sample of
n observations look like it was obtained by random sampling from the
uniform distribution on C ? If the alternatives to uniformity have no
preferred direction, it is reasonable to use test procedures which are
invariant under rotations of the circle. Such an invariant procedure can be
described in terms of a test statistic ¢(S;.52....Sp) which is a function of the
consecutive spacings $1.52....S, between the n data points; we reject the
hypothesis of unifor mity when ¢ is sufficiently large. The book by Mardia
(1972) reviews many of the test statistics which have been proposed for
testing unifor mijty.

What functions & will lead to reasonable tests for uniformity?
Functions which are increasing with respect to «or « are obvious

candidates. Let x-and y belong to 8. A function ¢ will be called inaressing
if o(x)<oly) whenever SP(x)«SP(y). A prefix of ¢ or v will indicate
whether we refer to Cor «. Clearly, any v-increasing function is also

c-increasing. Using the resuits (2.2) and (2.4) we can easily show the
following:

(4.4) If @ is a Schur-convex function of n arguments, then
& (x) = ®(x%)) js a cincreasing function for 1 ¢ k ¢ n-1.




(4.5) If & is a Schur-conver function of n{n-1) arguments, then
1) - ®(x(x  glo-1)) js g p-increasing function.

See Marshall and Olkin (1979) for information on Schur-convex functions.
Additional c~increasing functions may be obtained by taking various
combinations of the functions in (4.4); If y,, ¥, .. ¥g are c-increasing
functions, then ¥+ y,* .. +y, and max(y;, vy, .. ¥} are c-increasing, etc.

We note that many of the proposed test statistics are indeed either ¢
or v-increasing. We shall use the nomenclature of chapter 7 of Mardia
(1972). This source contains definitions for all the statistics mentioned
below except for the scan test which is described in Naus (1966) and Cressie
(1977).

The following statistics are all ~increasing: Kuiper's test, the range
test, the equal spacings test, Hodges-Ajne’s test and the scan test. These
statistics are alf closely related so that in section S we shall discuss only two
of them: the scan test and Kuiper's test.

Cressie (1976, 1979) considers test statistics of the form

n
1) - 2, hix'®)
i-1

with emphasis on the cases h(u) = -logu and h(u) = u2. According to (4.4), a
statistic of this form will be c-increasing whenever h is convex.

Examples of v-increasing statistics can be found in the general class of
tests for uniformity developed by Beran (1968, 1969). These test statistics
can all be rewritten in the form

oin-1)
By(x) =k + 3 h(y,) for some constant k and function h,
i=1
where y; are the components of the vector (x(1),x(?,__ xto-1))

According to (4.5), the function B, will be v-increasing whenever h is
convex. Using this result we can show that both Watson's Ui test and Ajne’s

A, test are v-increasing. See the discussion on pages 190-192 of Mardia's
book.

The Rayleigh test is an example of a test statistic which is got
c-increasing; counterexamples are easy to construct. This is to be expected
because the Rayleigh test is intended only for use in detecting unimodal
alternatives to uniformity and is not sensitive to many other forms of
nonunifor mity.




10

S Proofs

Proarof (1.1). We note that

ED(pb) - f(Illx,xob)dll)dx

where lizx.p) is the indicator function of the given interval and both

integrations are over all of C which is identified with [0,1) using addition
modulo one. Interchanging the order of integration yields (1.1).
Proaf of (1.2) is immediate.
Proaof of (1.3). Because of (1.2), it suffices to prove (1.3) for the

ordering <. In terms of the ordering § introduced in Section 3, we must

show that D(A,b) § D(pb) § D(5,,b) for all g and b. The extremal

distributions of the ordering § are well known (see Example 1.9(b), page 25

of Stoyan (1983) ) so that this result follows from (1.1) and the
accompanying discussion.

Proaf of (1.4) is immediate.

Proafaf (1.5). Again, by (1.2) it suffices to consider only «. To

simplify the presentation we carry out the proof only for measures ¢ which
are discrete with finitely many atoms. In this case (1.5) follows easily from
(1.7) which is proved later. Suppose ¢ has atoms of mass p,; at the points 1;

for 1 ¢i<n. Define the measure p; by (B + 3,) = (B) for all measurable B

completes the proof.
Proaf af (1.6). Again, it suffices to consider only «. We shall first

restate the definition of ‘« in a slightly different form. For the measures
and p, and & € (0,1/2) we define functions f; ; by [, ,(x) = g, ([1-8,1+8]). Now

(5.1) Wy < kg ifandonly if ; 4(U) § f;,(U) for all §€(0,1/2)

where U is uniformly distributed on C.
Using the assumptions in (1.6), it is straightforward to show for all
8 €(0,1/2) that[, , is symmetric and unimodal and
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X b ¢
[ fiudu ¢ [ uldu for 0cxg1/2.
-X -X

For any function g on C, let g denote its decreasing rearrangement. With
m(y) equal to the Lebesgue measure of the set (x:g(x)>y), we can define
g(u)=sup{y: m(y) > u} for 0 cu < 1. Clearly

2x x x 2x
l f, s(u)du - [ f, s(u)du ¢ ]'fu(u)du ¢ l f5 s(u)du
0 X X 0

for 0 <x <1/2. Therefore, using a result of Hardy, Littiewood and Potya
(see page 15 of Marshall and Olkin (1979) ), we conclude that

[, 5(U) § 14(U) as desired.
Proar of (1.7). We shall consider first the ordering «. Fix a value of

bandlet X; =D(p;b) for 1 cign andY = Dip,b). Then

Let ¥ be any converx function. We know that E¥(X;) ¢ EP(Y) for all i
because “p- Jensen’s inequality now yields

E¥(3,p;X;) ¢ B¥(Y)

which completes the proof. The argument for « is the same except that we

need consider only the function ¥(x) = x2

Proaf of (1.8). The following fact is needed in the proof. Let W and Z
be arbitrary bounded random variables and ¥ be any convex function
having a continuous second derivative.

(5.2) E¥(W) ¢ E¥((1-8)W + BZ) for ali f €(0,1) if and only if
ElZ-W)¥(W)] 2 0.
This fact is proved by taking expectations in the inequalities
(W) + B¥(WHZ-W) ¢ P((1-B)W + B) < P(W) + BP(W)(Z-W) +kB2.

The first inequality is a consequence of the convezity of ¥. The second
inequality is just the Taylor series with the remainder term replaced by an




i

upper bound. Let B denote the bounded set in which W and Z take values.

We can choose K to be any value greater than %sup( ¥*(u):ueB).
We shall prove (1.8) only for the ordering «. (The argument for « is

identical except that we consider only the function ¥(x) - x2.) Let X; and Y
be as in the proof of (1.7). We must show that E¥(Y) ¢ EP(Z p/X;) for all

convex functions ¥. It sufTices to verify this for smooth convex functions
(having continuous second derivatives) because any convex function can be
approximated arbitrarily well by a smooth one. Using (5.2) and

R(1-Bp+Ppy for 0<pcl weobtain EI(X;-Y)¥(Y)] 2 O for all i. Thus
E[((Z,pX)-Y)¥' (1] 2 0
and applying (5.2) leads to the desired conclusion.

Proafaf (2.1) is immediate from result (3.1) proved later.
Proal of (2.2). We need some preliminaries. For any vector w -

1/n at each point w, so that
1 a
(FW)(W) = = Ttw,st) -
i=1
It is well known (see page 17 of Marshall and Olkin (1979)) that
(5.3) vEw ifand only if F(v)§ F(w).

Now to the proof. We shall use (2.1) and show instead that

PM(x) «PM(y) if and only if 1® & y®) for | <k < n-1. We shall use L 1o

denote equality in distribution. It is easy to see that

(5.4) D(PM(x).k/n) ¥ Fa®) foro (K ¢n.

Using (5.3) and (5.4) leads to
D(PM(x).k/n) § D(PM(y).k/n) for all k if and only if x®) & y®) for all k.

12



It remains to show that x®) £ y(®) for all k implies
D{PM(x).b) § D(PM(y).b) when b = i/n for any integer i. This follows by
observing that

(5.5) If b=2a(i/n)+(1-A)(i+1)/n) withO<A <1 and 0 cign-1,
then D(PM(x).b) & ARG+ (1-4)R(xli+)) |

Proaf af (2.3). Using (1.1) we see that PM(x) « PM(y) if and only if
ED2(PM(x).b) < ED%(PM(y),b) for all b. From (5.4) we obtain

a
EDX(PM(x),k/n) = Q(x®))2 .

i=1

Combining this with (5.5) leads easily to the proof.
Proaf of (2.4). This result follows from (3.3) after noting that if X and

Y are independent random variables on C with the same distribution ., then
the distribution of d(X.Y) is

8L p((x(0 52), xto-1) + L p{(0,1)).

Proafof (3.1). We shall need some elementary facts concerning the
ordering § . If the random variables X and Y satis(y EX - EY then,

(5.6) XS Y if and only if E(X-s), ¢ E(Y-s), for all s,
and similarly
X § Y if and only if E(s-X), ¢ B(s-Y), for all s.

See Stoyan(1983), pages 8-12. Here we have used the notation (z), =
max(z,0).
The result (3.1) follows immediately from the formula

(5.7) E(D(p,s)-t), = B(s-D(p*,1)), .
The argument (using (5.6)) is

RN
iff  E(D(p,.8)-1), ¢ B(D(g,,8)-t), for all s and tin (0.1)
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iff  E(s-Dipj.0)), ¢ E(s-Dig3,t)), for all sand tin (0,1)
i B3 -

We now prove (5.7). Let .I'.’ denote convergence in distribution. For

distributions on C this has the usual meaning; g, L pif (1)~ p(I) for all
intervals I on C whose endpoints are not atoms of . It is straightforward to

check that p, L | implies p;f'. p* and D(u..s)!'. D(p.s) for all s. Thus
both sides of equation (5.7) are continuous with respect to convergence in
distribution. This implies that, in proving (5.7), it suffices to consider

measures i Which have no atoms and have support on all of C ; any
probability measure on C can be approximated arbitrarily well by a member
of this class. In the argument which follows we restrict g to be a member of
this class.

Identify C with [0,1). Define F and F* by F(x) - p({0.x]) and F*(x) -
p*([0.x)) for all x £[0,1). The assumption on p implies that F is invertible so
that F! -« F*. We shall regard F and F* as one-to-one mappings from C onto
itself. Let V and W be independent random variables unifor mly distributed
on C and consider the random arcs [V,V+s] and [W,W+t]. Since F! - F* we
have

(5.8)  P{IF(V),F(V+s)I D (W.W+t] } = P{{V,Ves] o [F*(W).F*(W+t)] } .

This formula is in fact true for all probability measures g, but the argument

requires more care.
Consider the left hand side of (5.8) and condition on the vajue of V.

Clearly P{{F(V),F(V+s)] D [W,W+t]| V} = (L-t), where L is the length of the
interval [F(V),F(V+s)]. Note that L = p([V,V+s}) = D(p,s). This leads to

P{IF(V),F(V+8)] 5 [W,W+t} } = B(D(p,8)-1), .

If we condition on the value of W in the right hand side of (5.8) and use a
similar argument we find that

P{[V,V+s] O [F*(W),F*(W+t)] } = B(s-Dip* 1)), .

This completes the proof.

Proar of (3.2). Let us reexamine the right hand side of (5.8). Define Y
- F*(W). Note that Y is distributed according to p and that p({F*(W),F*(W+1)])
= 1. Thus, by the definition which precedes (3.2), the length of
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[F*(W),F*(W+t)] is L(Y,u.t). Thus means that wne right hand side of (5.8)
equals E(s-L(Y.p.t)), sothat(5.7)can be rewritten as

E(D(,s)-t), = E(s-L(Y,u.t)), whereY is distributed according to p.

The proof is now completed by applying (5.6) as in the proof of (3.1).
Proaf of (3.3). Suppose that X and Y are independent with the same

distribution p. We first note that Ed(X,Y)=1/2. This is true even when j has

atoms, but in this case our convention regarding ties (d(z.z)= 0 or 1 with

equal probability) is crucial. Ed(XY)=1/2 is a consequence of d(X)Y) ‘: d(Y X)

and d(XY)+d(Y.X)=1 when X#Y.
Next we note that

(5.9) ED?(y,s) - 2E(s-d(X.Y)), for allp.

We shall prove this only for p which have no atoms and have support on all

of C. (The proof for general p can then be obtained by a limiting argument.)
Go back to (5.8) and replace t by a random variable U which is uniformly
distributed on (0,1) and independent of V and W. Now W and W+U are

independent and uniformly distributed on C so that F*(W) and F*(W-+U) are
independent with the distribution . The length of [F*(W),F*(W+U)] is thus
d(XY) with X = F*(W) and Y - F*(W+U). Repeating the argument in the
proof of (5.7) now yields E(D(p,s)-U), - E(s-d(X.Y)), . Because

1
f (x-u),du=1x2/2 for0¢xg¢l
0

we have E(D{p,s)-U), - (ED%(,s))/2 and the proof of (5.9) is complete.

Using (5.9) we see that ED2(y,.s) ¢ ED%(,,s) for all s if and only if
E(s-d(X,.Y,)), s E(s-d(X,.Y,)), for alls. Now (1.1) and (5.6) lead us
immediatety 10 (3.3).

Proafaf (4.1). Fisst note that Bu,(A) = Be,(A). This foliows from
Fubini's theorem which gives

B - [PacAiop)
c
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and the fact that the distribution of the random set /A is rotationally
invariant. From the equality of means we see immediately that

Var(p, () ¢ Var(p,(A)) if and only if E(1-44,(A)? ¢ E(1-p,(A)).

Using 1-p(A) = p(A°) (With ¢ denoting complement) and Fubini's
theorem we obtain

(5100 B - [ | PaeACycA9dnmany)
ce

Define B; = [U,U;*b;) so that A is the union of B1.8;,.. B, The intervals
8, are independent so that
n
PaeA yed) - HP{X eBlyeB))
i=1

where it is easily seen that

PaxeBlycB) - (d(xy)-by), + (1-d(xy)-by), .

Thus (5.10) can be rewritten as E{1-p(s2))? = E¥(d(X.Y)) where X and Y are
independent with distribution p and

1]
¥(z) = []l(z-b;), + (1-z-by),} .

i=1
It is straightforward to show that ¥ is convex so that (4.1) now follows from
result (3.3).

Proaf ar (4.2). To simplify the presentation we carry out the proof

only for measures p; which are discrete with finitely many atoms. Suppose
i3 has atoms of mass p, at the points x, for 1 ¢ i ¢ n. Then

by(A) - Zimzm-xa)

so that




¥l (A) ¢ 200, (A-1,)

holds for any convex function ¥. Now taking expectations and using the
rotational invariance of the distribution of A leads to E¥(g,(«A)) ¢ E¥(j,(A))

as desired.
Praoal af (4.3). We shall prove this only for p, p, which have no atoms

and have support on all of C. Let U,,U,,.. U, be iid. uniform onC.
Suppose U(y),Ucz)..U(p) are the points U; arranged in counterclockwise

order beginning with U;-Ucy) . Identify C with [0,1) and define F, by F,(x) -
1;(10.x)) for i - 1,2. Now define the dual meaures p} and u3 onC by

#310.1)) - F; '(x). The points F;'(U,).F;'(Up)....F;'(U,) are iid. from the

distribution g; so that we have

EIS p’l(lU(l) Ug.1))) and ZIT u;([U(l).U(k,l))).
i= i=
LetB - 1U(;).U(y.q)). Conditional on its length, B is just a uniformly placed

random arc on C so that pj(B) § p3(B) follows immediately from (3.1). This

completes the proof.
Staustses far testing uniformify. We now show that the scan statistic
and Kuiper's statistic are ¢-increasing. Let s = (s,.8,....8,) be the vector of

consecutive spacings between n points on C and let N(x,b) denote the

number of points on C contained in the interval (x,x+b). The scan statistic
N(b) having width parameter b is defined as N(b) = sup N(x.b) with x
X

ranging over C. The scan statistic has an obvious relationship with the
higher order spacings;

N(b) 2 k+1 if and only if mm s® b
if and only if max st8) 1p.

The function ®(x,.x,,...x,) = max x; is Schur-convex so that (4.4) implies
1

the function ¢(s) - max st} is cincreasing which in turn implies that the
1
scan statistic is ¢c-increasing.
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Now we consider Kuiper's test. Choose an arbitrary zero point onC

and identify C with the interval [0,1). Let y(,).y(3)..-.Y(q) be the order
statistics of the n points in our sample. Kuiper's test statistic V, may be
computed using the formula

| L .
Va=q *maryg - g) - min g -g)-

See page 174 of Mardia(1972). By arguing as in Section 4 of Cressie (1977),
it is straightforward to reexpress Kuiper's test in terms of the spacings as

1«
+mkax{miax(s-n):)}

B [—

(5-1 l ) Vn -
where s -% denotes the vector (s, -nl : sz-% vr S -%). The function inside

braces in (5.11) is c-increasing by (4.4). Now, since the maximum of
c-increasing functions is again ¢-increasing, we see that V, is c-increasing as

desired.
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